Abstract
AbstractWe consider degenerate Kolmogorov–Fokker–Planck operators $$\begin{aligned} \mathcal {L}u&=\sum _{i,j=1}^{m_{0}}a_{ij}(x,t)\partial _{x_{i}x_{j}} ^{2}u+\sum _{k,j=1}^{N}b_{jk}x_{k}\partial _{x_{j}}u-\partial _{t}u\\&\equiv \sum _{i,j=1}^{m_{0}}a_{ij}(x,t)\partial _{x_{i}x_{j}}^{2}u+Yu \end{aligned}$$
L
u
=
∑
i
,
j
=
1
m
0
a
ij
(
x
,
t
)
∂
x
i
x
j
2
u
+
∑
k
,
j
=
1
N
b
jk
x
k
∂
x
j
u
-
∂
t
u
≡
∑
i
,
j
=
1
m
0
a
ij
(
x
,
t
)
∂
x
i
x
j
2
u
+
Y
u
(with $$(x,t)\in \mathbb {R}^{N+1}$$
(
x
,
t
)
∈
R
N
+
1
and $$1\le m_{0}\le N$$
1
≤
m
0
≤
N
) such that the corresponding model operator having constant $$a_{ij}$$
a
ij
is hypoelliptic, translation invariant w.r.t. a Lie group operation in $$\mathbb {R} ^{N+1}$$
R
N
+
1
and 2-homogeneous w.r.t. a family of nonisotropic dilations. The matrix $$(a_{ij})_{i,j=1}^{m_{0}}$$
(
a
ij
)
i
,
j
=
1
m
0
is symmetric and uniformly positive on $$\mathbb {R}^{m_{0}}$$
R
m
0
. The coefficients $$a_{ij}$$
a
ij
are bounded and Dini continuous in space, and only bounded measurable in time. This means that, setting $$\begin{aligned} \mathrm {(i)}&\,\,S_{T}=\mathbb {R}^{N}\times \left( -\infty ,T\right) ,\\ \mathrm {(ii)}&\,\,\omega _{f,S_{T}}(r) = \sup _{\begin{array}{c} (x,t),(y,t)\in S_{T}\\ \Vert x-y\Vert \le r \end{array}}\vert f(x,t) -f(y,t)\vert \\ \mathrm {(iii)}&\,\,\Vert f\Vert _{\mathcal {D}( S_{T}) } =\int _{0}^{1} \frac{\omega _{f,S_{T}}(r) }{r}dr+\Vert f\Vert _{L^{\infty }\left( S_{T}\right) } \end{aligned}$$
(
i
)
S
T
=
R
N
×
-
∞
,
T
,
(
ii
)
ω
f
,
S
T
(
r
)
=
sup
(
x
,
t
)
,
(
y
,
t
)
∈
S
T
‖
x
-
y
‖
≤
r
|
f
(
x
,
t
)
-
f
(
y
,
t
)
|
(
iii
)
‖
f
‖
D
(
S
T
)
=
∫
0
1
ω
f
,
S
T
(
r
)
r
d
r
+
‖
f
‖
L
∞
S
T
we require the finiteness of $$\Vert a_{ij}\Vert _{\mathcal {D}(S_{T})}$$
‖
a
ij
‖
D
(
S
T
)
. We bound $$\omega _{u_{x_{i}x_{j}},S_{T}}$$
ω
u
x
i
x
j
,
S
T
, $$\Vert u_{x_{i}x_{j}}\Vert _{L^{\infty }( S_{T}) }$$
‖
u
x
i
x
j
‖
L
∞
(
S
T
)
($$i,j=1,2,...,m_{0}$$
i
,
j
=
1
,
2
,
.
.
.
,
m
0
), $$\omega _{Yu,S_{T}}$$
ω
Y
u
,
S
T
, $$\Vert Yu\Vert _{L^{\infty }( S_{T}) }$$
‖
Y
u
‖
L
∞
(
S
T
)
in terms of $$\omega _{\mathcal {L}u,S_{T}}$$
ω
L
u
,
S
T
, $$\Vert \mathcal {L}u\Vert _{L^{\infty }( S_{T}) }$$
‖
L
u
‖
L
∞
(
S
T
)
and $$\Vert u\Vert _{L^{\infty }\left( S_{T}\right) }$$
‖
u
‖
L
∞
S
T
, getting a control on the uniform continuity in space of $$u_{x_{i}x_{j}},Yu$$
u
x
i
x
j
,
Y
u
if $$\mathcal {L}u$$
L
u
is bounded and Dini-continuous in space. Under the additional assumption that both the coefficients $$a_{ij}$$
a
ij
and $$\mathcal {L}u$$
L
u
are log-Dini continuous, meaning the finiteness of the quantity $$\begin{aligned} \int _{0}^{1}\frac{\omega _{f,S_{T}}\left( r\right) }{r}\left| \log r\right| dr, \end{aligned}$$
∫
0
1
ω
f
,
S
T
r
r
log
r
d
r
,
we prove that $$u_{x_{i}x_{j}}$$
u
x
i
x
j
and Yu are Dini continuous; moreover, in this case, the derivatives $$u_{x_{i}x_{j}}$$
u
x
i
x
j
are locally uniformly continuous in space and time.
Publisher
Springer Science and Business Media LLC