KFP operators with coefficients measurable in time and Dini continuous in space

Author:

Biagi S.,Bramanti M.ORCID,Stroffolini B.

Abstract

AbstractWe consider degenerate Kolmogorov–Fokker–Planck operators $$\begin{aligned} \mathcal {L}u&=\sum _{i,j=1}^{m_{0}}a_{ij}(x,t)\partial _{x_{i}x_{j}} ^{2}u+\sum _{k,j=1}^{N}b_{jk}x_{k}\partial _{x_{j}}u-\partial _{t}u\\&\equiv \sum _{i,j=1}^{m_{0}}a_{ij}(x,t)\partial _{x_{i}x_{j}}^{2}u+Yu \end{aligned}$$ L u = i , j = 1 m 0 a ij ( x , t ) x i x j 2 u + k , j = 1 N b jk x k x j u - t u i , j = 1 m 0 a ij ( x , t ) x i x j 2 u + Y u (with $$(x,t)\in \mathbb {R}^{N+1}$$ ( x , t ) R N + 1 and $$1\le m_{0}\le N$$ 1 m 0 N ) such that the corresponding model operator having constant $$a_{ij}$$ a ij is hypoelliptic, translation invariant w.r.t. a Lie group operation in $$\mathbb {R} ^{N+1}$$ R N + 1 and 2-homogeneous w.r.t. a family of nonisotropic dilations. The matrix $$(a_{ij})_{i,j=1}^{m_{0}}$$ ( a ij ) i , j = 1 m 0 is symmetric and uniformly positive on $$\mathbb {R}^{m_{0}}$$ R m 0 . The coefficients $$a_{ij}$$ a ij are bounded and Dini continuous in space, and only bounded measurable in time. This means that, setting $$\begin{aligned} \mathrm {(i)}&\,\,S_{T}=\mathbb {R}^{N}\times \left( -\infty ,T\right) ,\\ \mathrm {(ii)}&\,\,\omega _{f,S_{T}}(r) = \sup _{\begin{array}{c} (x,t),(y,t)\in S_{T}\\ \Vert x-y\Vert \le r \end{array}}\vert f(x,t) -f(y,t)\vert \\ \mathrm {(iii)}&\,\,\Vert f\Vert _{\mathcal {D}( S_{T}) } =\int _{0}^{1} \frac{\omega _{f,S_{T}}(r) }{r}dr+\Vert f\Vert _{L^{\infty }\left( S_{T}\right) } \end{aligned}$$ ( i ) S T = R N × - , T , ( ii ) ω f , S T ( r ) = sup ( x , t ) , ( y , t ) S T x - y r | f ( x , t ) - f ( y , t ) | ( iii ) f D ( S T ) = 0 1 ω f , S T ( r ) r d r + f L S T we require the finiteness of $$\Vert a_{ij}\Vert _{\mathcal {D}(S_{T})}$$ a ij D ( S T ) . We bound $$\omega _{u_{x_{i}x_{j}},S_{T}}$$ ω u x i x j , S T , $$\Vert u_{x_{i}x_{j}}\Vert _{L^{\infty }( S_{T}) }$$ u x i x j L ( S T ) ($$i,j=1,2,...,m_{0}$$ i , j = 1 , 2 , . . . , m 0 ), $$\omega _{Yu,S_{T}}$$ ω Y u , S T , $$\Vert Yu\Vert _{L^{\infty }( S_{T}) }$$ Y u L ( S T ) in terms of $$\omega _{\mathcal {L}u,S_{T}}$$ ω L u , S T , $$\Vert \mathcal {L}u\Vert _{L^{\infty }( S_{T}) }$$ L u L ( S T ) and $$\Vert u\Vert _{L^{\infty }\left( S_{T}\right) }$$ u L S T , getting a control on the uniform continuity in space of $$u_{x_{i}x_{j}},Yu$$ u x i x j , Y u if $$\mathcal {L}u$$ L u is bounded and Dini-continuous in space. Under the additional assumption that both the coefficients $$a_{ij}$$ a ij and $$\mathcal {L}u$$ L u are log-Dini continuous, meaning the finiteness of the quantity $$\begin{aligned} \int _{0}^{1}\frac{\omega _{f,S_{T}}\left( r\right) }{r}\left| \log r\right| dr, \end{aligned}$$ 0 1 ω f , S T r r log r d r , we prove that $$u_{x_{i}x_{j}}$$ u x i x j and Yu are Dini continuous; moreover, in this case, the derivatives $$u_{x_{i}x_{j}}$$ u x i x j are locally uniformly continuous in space and time.

Funder

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Reference18 articles.

1. S. Biagi, M. Bramanti: Schauder estimates for Kolmogorov–Fokker–Planck operators with coefficients measurable in time and Hölder continuous in space. J. Math. Anal. Appl. 533 (2024), no. 1, Paper No. 127996.

2. M. Bramanti, L. Brandolini: Hörmander operators. With a foreword by Ermanno Lanconelli. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, [2023]. xxviii+693 pp.

3. M. Bramanti, S. Polidoro: Fundamental solutions for Kolmogorov–Fokker–Planck operators with time-depending measurable coefficients, Math. Eng. 2 (2020), no. 4, 734–771.

4. A. Brandt: Interior Schauder estimates for parabolic differential- (or difference-) equations via the maximum principle. Israel J. Math. 7 (1969), 254–262.

5. P.-E. Chaudru de Raynal, I. Honoré, S. Menozzi: Sharp Schauder estimates for some degenerate Kolmogorov equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 22 (2021), no. 3, 989–1089.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3