Abstract
<p style='text-indent:20px;'>In this paper we prove the existence of at least one positive solution for nonlocal semipositone problem of the type</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ (P_\lambda^\mu)\left\{ \begin{array}{rcl} (-\Delta)^s u& = & \lambda(u^{q}-1)+\mu u^r \text{ in } \Omega\\ u&>&0 \text{ in } \Omega\\ u&\equiv &0 \text{ on }{\mathbb R^N\setminus\Omega}. \end{array}\right. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>when the positive parameters <inline-formula><tex-math id="M1">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ \mu $\end{document}</tex-math></inline-formula> belong to certain range. Here <inline-formula><tex-math id="M3">\begin{document}$ \Omega\subset \mathbb{R}^N $\end{document}</tex-math></inline-formula> is assumed to be a bounded open set with smooth boundary, <inline-formula><tex-math id="M4">\begin{document}$ s\in (0, 1), N> 2s $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ 0<q<1<r\leq \frac{N+2s}{N- 2s}. $\end{document}</tex-math></inline-formula> First we consider <inline-formula><tex-math id="M6">\begin{document}$ (P_ \lambda^\mu) $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M7">\begin{document}$ \mu = 0 $\end{document}</tex-math></inline-formula> and prove that there exists <inline-formula><tex-math id="M8">\begin{document}$ \lambda_0\in(0, \infty) $\end{document}</tex-math></inline-formula> such that for all <inline-formula><tex-math id="M9">\begin{document}$ \lambda> \lambda_0 $\end{document}</tex-math></inline-formula> the problem <inline-formula><tex-math id="M10">\begin{document}$ (P_ \lambda^0) $\end{document}</tex-math></inline-formula> admits at least one positive solution. In fact we will show the existence of a continuous branch of maximal solutions of <inline-formula><tex-math id="M11">\begin{document}$ (P_\lambda^0) $\end{document}</tex-math></inline-formula> emanating from infinity. Next for each <inline-formula><tex-math id="M12">\begin{document}$ \lambda>\lambda_0 $\end{document}</tex-math></inline-formula> and for all <inline-formula><tex-math id="M13">\begin{document}$ 0<\mu<\mu_{\lambda} $\end{document}</tex-math></inline-formula> we establish the existence of at least one positive solution of <inline-formula><tex-math id="M14">\begin{document}$ (P_\lambda^\mu) $\end{document}</tex-math></inline-formula> using variational method. Also in the sub critical case, i.e., for <inline-formula><tex-math id="M15">\begin{document}$ 1<r<\frac{N+2s}{N-2s} $\end{document}</tex-math></inline-formula>, we show the existence of second positive solution via mountain pass argument.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Analysis,General Medicine
Reference26 articles.
1. A. Ambrosetti, P. H. Rabinowitz.Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.
2. H. Berestycki, L. A. Caffarelli, L. Nirenberg.Monotonicity for elliptic equations in unbounded Lipschitz domains, Comm. Pure Appl. Math., 50 (1997), 1089-1111.
3. G. M. Bisci, V. D. Rǎdulescu, R. Servadei., Variational Methods for Nonlocal Fractional Problems: Encyclopedia of Mathematics and its Applications, ${ref.volume} (2016).
4. G. M. Bisci, R. Servadei.A bifurcation result for non-local fractional equations, Anal. Appl. (Singap.), 13 (2015), 371-394.
5. G. M. Bisci, R. Servadei.Lower semicontinuity of functionals of fractional type and applications to nonlocal equations with critical Sobolev exponent, Adv. Differ. Equ., 20 (2015), 635-660.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献