A bifurcation result for non-local fractional equations

Author:

Molica Bisci Giovanni1,Servadei Raffaella2

Affiliation:

1. Dipartimento PAU, Università `Mediterranea' di Reggio Calabria, Via Melissari 24, 89124 Reggio Calabria, Italy

2. Dipartimento di Scienze di Base e Fondamenti, Università degli Studi di Urbino `Carlo Bo', Piazza della Repubblica 13, 61029 Urbino (Pesaro e Urbino), Italy

Abstract

In the present paper, we consider problems modeled by the following non-local fractional equation [Formula: see text] where s ∈ (0, 1) is fixed, (-Δ)sis the fractional Laplace operator, λ and μ are real parameters, Ω is an open bounded subset of ℝn, n > 2s, with Lipschitz boundary and f is a function satisfying suitable regularity and growth conditions. A critical point result for differentiable functionals is exploited, in order to prove that the problem admits at least one non-trivial and non-negative (non-positive) solution, provided the parameters λ and μ lie in a suitable range. The existence result obtained in the present paper may be seen as a bifurcation theorem, which extends some results, well known in the classical Laplace setting, to the non-local fractional framework.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Analysis

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Existence Results for Kirchhoff Nonlocal Fractional Equations;Kragujevac Journal of Mathematics;2024

2. Multiple nontrivial solutions of superlinear fractional Laplace equations without (AR) condition;Advances in Nonlinear Analysis;2023-01-01

3. Existence Results for a 2nth-Order Differential Equation with Sturm-Liouville Operator;Numerical Functional Analysis and Optimization;2021-07-20

4. A variational approach for nonlocal problems with variable exponent and nonhomogeneous Neumann conditions;Annals of the University of Craiova - Mathematics and Computer Science Series;2021-06-30

5. A multiparameter fractional Laplace problem with semipositone nonlinearity;Communications on Pure & Applied Analysis;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3