Well-posedness for a coupled system of Kawahara/KdV type equations with polynomials nonlinearities

Author:

Kondo Cezar1,Pes Ronaldo1

Affiliation:

1. Departamento de Matemática, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil

Abstract

<p style='text-indent:20px;'>We consider the initial value problem (IVP) associated to a coupled system of modified Kawahara/KdV type equations with polynomials nonlinearities. For the model in question, the Cauchy problem is of interest, and is shown to be well-posed for given data in a Gevrey spaces. Our results make use of techniques presented in Grujić and Kalisch, who studied the Gevrey regularity for a class of water-wave models and the well-posedness of a IVP associated to a general equation. The proof relies on estimates in space-time norms adapted to the linear part of the equations. In particular, estimates in Bourgain spaces are proven for the linear and nonlinear terms of the system and the main result is obtained by a contraction principle. The class of system in view generalizes the system of modified Kawahara/KdV type equations studied by Kondo and Pes, which contains a number of systems arising in the modeling of waves in fluids, stability and instability of solitary waves and models for wave propagation in physical systems where both nonlinear and dispersive effects are important.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Analysis,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3