Global well-posedness for a system of KdV-type equations with coupled quadratic nonlinearities

Author:

bona Jerry L.,Cohen Jonathan,Wang Gang

Abstract

AbstractIn this paper, coupled systemsof Korteweg-de Vries type are considered, where u = u(x, t), v = v(x, t) are real-valued functions and where x, t∈R. Here, subscripts connote partial differentiation andare quadratic polynomials in the variables u and v. Attention is given to the pure initial-value problem in which u(x, t) and v(x, t) are both specified at t = 0, namely,for x ∈ ℝ. Under suitable conditions on P and Q, global well-posedness of this problem is established for initial data in the L2-based Sobolev spaces Hs(ℝ) × Hs(ℝ) for any s > ‒3/4.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lower bounds on the radius of spatial analyticity of solution for KdV-BBM type equations;Nonlinear Differential Equations and Applications NoDEA;2023-04-25

2. Global control aspects for long waves in nonlinear dispersive media;ESAIM: Control, Optimisation and Calculus of Variations;2023

3. Blowup and ill-posedness for the complex, periodic KdV equation;Communications in Contemporary Mathematics;2022-08-24

4. A Posteriori Error Estimates for Finite Element Methods for Systems of Nonlinear, Dispersive Equations;Communications on Applied Mathematics and Computation;2022-01-13

5. Well-posedness for a coupled system of Kawahara/KdV type equations with polynomials nonlinearities;Communications on Pure and Applied Analysis;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3