Self-similar blow-up patterns for a reaction-diffusion equation with weighted reaction in general dimension

Author:

Iagar Razvan Gabriel,Muñoz Ana Isabel,Sánchez Ariel

Abstract

<p style='text-indent:20px;'>We classify the finite time blow-up profiles for the following reaction-diffusion equation with unbounded weight:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \partial_tu = \Delta u^m+|x|^{\sigma}u^p, $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>posed in any space dimension <inline-formula><tex-math id="M1">\begin{document}$ x\in \mathbb{R}^N $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ t\geq0 $\end{document}</tex-math></inline-formula> and with exponents <inline-formula><tex-math id="M3">\begin{document}$ m&gt;1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ p\in(0, 1) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ \sigma&gt;2(1-p)/(m-1) $\end{document}</tex-math></inline-formula>. We prove that blow-up profiles in backward self-similar form exist for the indicated range of parameters, showing thus that the unbounded weight has a strong influence on the dynamics of the equation, merging with the nonlinear reaction in order to produce finite time blow-up. We also prove that all the blow-up profiles are <i>compactly supported</i> and might present two different types of interface behavior and three different possible <i>good behaviors</i> near the origin, with direct influence on the blow-up behavior of the solutions. We classify all these profiles with respect to these different local behaviors depending on the magnitude of <inline-formula><tex-math id="M6">\begin{document}$ \sigma $\end{document}</tex-math></inline-formula>. This paper generalizes in dimension <inline-formula><tex-math id="M7">\begin{document}$ N&gt;1 $\end{document}</tex-math></inline-formula> previous results by the authors in dimension <inline-formula><tex-math id="M8">\begin{document}$ N = 1 $\end{document}</tex-math></inline-formula> and also includes some finer classification of the profiles for <inline-formula><tex-math id="M9">\begin{document}$ \sigma $\end{document}</tex-math></inline-formula> large that is new even in dimension <inline-formula><tex-math id="M10">\begin{document}$ N = 1 $\end{document}</tex-math></inline-formula>.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Analysis,General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3