Qualitative properties of solutions to a reaction-diffusion equation with weighted strong reaction

Author:

Iagar Razvan Gabriel,Munoz Ana I.,Sanchez Ariel

Abstract

We study the existence and qualitative properties of solutions to the Cauchy problem associated to the quasilinear reaction-diffusion equation $$ \partial_tu=\Delta u^m+(1+|x|)^{\sigma}u^p, $$ posed for \((x,t)\in\mathbb{R}^N\times(0,\infty)\), where \(m>1\), \(p\in(0,1)\) and \(\sigma>0\). Initial data are taken to be bounded, non-negative and compactly supported. In the range when \(m+p\geq2\), we prove existence of local solutions with a finite speed of propagation of their supports for compactly supported initial conditions. We also show in this case that, for a given compactly supported initial condition, there exist infinitely many solutions to the Cauchy problem, by prescribing the evolution of their interface. In the complementary range \(m+p<2\), we obtain new Aronson-Benilan estimates satisfied by solutions to the Cauchy problem, which are of independent interest as a priori bounds for the solutions. We apply these estimates to establish infinite speed of propagation of the supports of solutions if \(m+p<2\), that is, \(u(x,t)>0\) for any \(x\in\mathbb{R}^N\), \(t>0\), even in the case when the initial condition \(u_0\) is compactly supported. For more information see https://ejde.math.txstate.edu/Volumes/2023/72/abstr.html

Publisher

Texas State University

Subject

Analysis

Reference36 articles.

1. D. Andreucci, E. DiBenedetto; On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources, Ann. Scuola Norm. Sup. Pisa, 18 (1991), 363-441.

2. D. Andreucci, A. F. Tedeev; Universal bounds at the blow-up time for nonlinear parabolic equations, Adv. Differential Equations, 10 (2005), no. 1, 89-120.

3. D. G. Aronson, Ph. B¢¥enilan; R¢¥egularit¢¥e des solutions de l¡¯¢¥equation des milieux poreux dans RN (French), CR Acad. Sci. Paris S¢¥er A, 288 (1979), 103-105.

4. D. G. Aronson, L. A. Caffarelli; The initial trace of a solution of the porous medium equation, Trans. Amer. Math. Soc., 280 (1983), no. 1, 351-366.

5. C. Bandle, H. Levine; On the existence and nonexistence of global solutions of reactiondiffusion equations in sectorial domains, Trans. Amer. Math. Soc., 316 (1989), 595-622.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3