Affiliation:
1. School of Mathematics, Harbin Institute of Technology, Harbin 150001, China
Abstract
<p style='text-indent:20px;'>In this paper, we focus on a class of general pseudo-relativistic systems</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \begin{cases} \begin{aligned} &(-\Delta+m^2)^su(x) = f(u(x), v(x)), \\ &(-\Delta+m^2)^tv(x) = g(u(x), v(x)), \end{aligned} \end{cases} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ m \in (0, +\infty) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ s, t \in (0,1) $\end{document}</tex-math></inline-formula>. Before giving the main results, we first introduce a decay at infinity and a narrow region principle. Then we implement the direct method of moving planes to show the radial symmetry and monotonicity of positive solutions for the above system in both the unit ball and the whole space.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Analysis,General Medicine
Reference23 articles.
1. V. Ambrosio, Ground states solutions for a non-linear equation involving a pseudo-relativistic Schrödinger operator, J. Math. Phys., 57 (2016), 051502, 18 pp.
2. H. Berestycki, L. Nirenberg.Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations, J. Geom. Phys., 5 (1988), 237-275.
3. J. Busca, B. Sirakov.Symmetry results for semilinear elliptic systems in the whole space, J. Differ. Equ., 163 (2000), 41-56.
4. H. Bueno, AHS. Medeiros and GA. Pereira, Pohozaev-type identities for a pseudo-relativistic Schrödinger operator and applications, arXiv: 1810.07597.
5. L. Caffarelli, L. Silvestre.An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献