Affiliation:
1. School of Mathematical Sciences, Qufu Normal University , Qufu , 273165 , P. R. China
2. School of Mathematics and Statistics, Huanghuai University , Zhumadian , 463000 , P. R. China
Abstract
Abstract
In this article, we consider the parabolic equations with nonlocal Monge-Ampère operators
∂
u
∂
t
(
x
,
t
)
−
D
s
θ
u
(
x
,
t
)
=
f
(
u
(
x
,
t
)
)
,
(
x
,
t
)
∈
R
+
n
×
R
.
\frac{\partial u}{\partial t}\left(x,t)-{D}_{s}^{\theta }u\left(x,t)=f\left(u\left(x,t)),\hspace{1.0em}\left(x,t)\in {{\mathbb{R}}}_{+}^{n}\times {\mathbb{R}}.
We first prove the narrow region principle and maximal principle for antisymmetric functions, under the condition that
u
u
is uniformly bounded, which weaken the general decay condition
u
→
0
u\to 0
at infinity. Then, the monotonicity of positive solutions is established using the method of moving planes.
Reference22 articles.
1. L. Caffarelli and F. Charro, On a fractional Monge-Ampère operator, Ann. PDE. 1 (2015), 47.
2. L. Caffarelli and F. Charro, On a family of fully nonlinear integro-differential operators: From fractional Laplacian to nonlocal Monge-Ampère, 2021. arXiv: http://arXiv.org/abs/arXiv:2111.12781.
3. X. Chen, G. Bao, and G. Li, The sliding method for the nonlocal Monge-Ampère operator, Nonlinear Anal. 196 (2020), 111786.
4. X. Chen, G. Bao, and G. Li, Symmetry of solutions for a class of nonlocal Monge-Ampère equations, Complex Var. Elliptic Equ. 67 (2022), 129–150.
5. X. Chen, G. Li, and S. Bao, Symmetry and monotonicity of positive solutions for a class of general pseudo-relativistic systems, Commun. Pure Appl. Anal. 21 (2022), no. 5, 1755–1772.