Author:
Almeida Víctor,Betancor Jorge J.
Abstract
<p style='text-indent:20px;'>We prove variation and oscillation <inline-formula><tex-math id="M1">\begin{document}$ L^p $\end{document}</tex-math></inline-formula>-inequalities associated with fractional derivatives of certain semigroups of operators and with the family of truncations of Riesz transforms in the inverse Gaussian setting. We also study these variational <inline-formula><tex-math id="M2">\begin{document}$ L^p $\end{document}</tex-math></inline-formula>-inequalities in a Banach-valued context by considering Banach spaces with the UMD-property and whose martingale cotype is fewer than the variational exponent. We establish <inline-formula><tex-math id="M3">\begin{document}$ L^p $\end{document}</tex-math></inline-formula>-boundedness properties for weighted difference involving the semigroups under consideration.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Analysis,General Medicine
Reference42 articles.
1. H. Aimar, L. Forzani, R. Scotto.On Riesz transforms and maximal functions in the context of Gaussian harmonic analysis, Trans. Amer. Math. Soc., 359 (2007), 2137-2154.
2. M. A. Akcoglu, R. L. Jones, P. O. Schwartz.Variation in probability, ergodic theory and analysis, Illinois J. Math., 42 (1998), 154-177.
3. J. J. Betancor, A. Castro and M. de León Contreras, The hardy-littlewood property and maximal operators associated with the inverse gauss measure, arXiv: 2010.01341.
4. J. J. Betancor, A. J. Castro, J. Curbelo, J. C. Fariña, L. Rodríguez-Mesa.Square functions in the Hermite setting for functions with values in UMD spaces, Ann. Mat. Pura Appl., 193 (2014), 1397-1430.
5. J. J. Betancor, R. Crescimbeni, J. L. Torrea.The $\rho$-variation of the heat semigroup in the Hermitian setting: behaviour in $L^\infty$, Proc. Edinb. Math. Soc., 54 (2011), 569-585.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献