Author:
Betancor J. J.,Crescimbeni R.,Torrea J. L.
Abstract
AbstractLet$\mathcal{V}_\rho(\re^{-tH})$, ρ > 2, be the ρ-variation of the heat semigroup associated to the harmonic oscillatorH= ½(−Δ + |x|2). We show that iff∈L∞(ℝ), the$\mathcal{V}_\rho(\re^{-tH})$(f)(x) < ∞, a.e.x∈ ℝ. However, we find a functionG∈L∞(ℝ), such that$\mathcal{V}_\rho(\re^{-tH})$(G)(x) ∉L∞(ℝ). We also analyse the local behaviour inL∞of the operator$\mathcal{V}_\rho(\re^{-tH})$. We find that its growth is smaller than that of a standard singular integral operator. As a by-product of our work we obtain anL∞(ℝ) functionF, such that the square functiona.e.x∈ ℝ, whereis the classical Poisson kernal in ℝ.
Publisher
Cambridge University Press (CUP)
Reference10 articles.
1. Some properties of the Littlewood-Paley 𝑔-function
2. Some properties of Littlewood–Paley's g-function;Wang;Sci. Sinica,1985
3. 6. Oberlin R. , Seeger A. , Tao T. , Thiele C. and Wright J. , A variation norm Carleson theorem, preprint (arXiv:0910.1555v2; 2010).
4. Strong variational and jump inequalities in harmonic analysis
5. Oscillation in ergodic theory
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献