Classification method for imbalanced LiDAR point cloud based on stack autoencoder

Author:

Ren Peng12,Xia Qunli1

Affiliation:

1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

2. Southwest Institute of Technical Physics, Chengdu 610041, China

Abstract

<abstract><p>The existing classification methods of LiDAR point cloud are almost based on the assumption that each class is balanced, without considering the imbalanced class problem. Moreover, from the perspective of data volume, the LiDAR point cloud classification should be a typical big data classification problem. Therefore, by studying the existing deep network structure and imbalanced sampling methods, this paper proposes an oversampling method based on stack autoencoder. The method realizes automatic generation of synthetic samples by learning the distribution characteristics of the positive class, which solves the problem of imbalance training data well. It only takes the geometric coordinates and intensity information of the point clouds as the input layer and does not need feature construction or fusion, which reduces the computational complexity. This paper also discusses the influence of sampling number, oversampling method and classifier on the classification results, and evaluates the performance from three aspects: true positive rate, positive predictive value and accuracy. The results show that the oversampling method based on stack autoencoder is suitable for imbalanced LiDAR point cloud classification, and has a good ability to improve the effect of positive class. If it is combined with optimized classifier, the classification performance of imbalanced point cloud is greatly improved.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3