Abstract
Abstract. Cityscapes contain a variety of objects, each with a particular role in urban administration and development. With the rapid growth and implementation of 3D imaging technology, urban areas are increasingly surveyed with high-resolution point clouds. This technical advancement extensively improves our ability to capture and analyse urban environments and their small objects. Deep learning algorithms for point cloud data have shown considerable capacity in 3D object classification but still face problems with generally under-represented objects (such as light poles or chimneys). This paper introduces the ESTATE dataset (https://github.com/3DOM-FBK/ESTATE), which combines available datasets of various sensors, densities, regions, and object types. It includes 13 classes featuring intensity and/or colour attributes. Tests using ESTATE demonstrate that the dataset improves the classification performance of deep learning techniques and could be a game-changer to advance in the 3D classification of urban objects.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献