Regularization scheme for uncertain fuzzy differential equations: Analysis of solutions

Author:

Martynyuk Anatoliy1,Stamov Gani2,Stamova Ivanka2,Martynyuk–Chernienko Yulya1

Affiliation:

1. S. P. Timoshenko Institute of Mechanics, NAS of Ukraine, 3 Nesterov str., Kiev-57, 03057, Ukraine

2. Department of Mathematics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA

Abstract

<abstract><p>In this paper a regularization scheme for a family of uncertain fuzzy systems of differential equations with respect to the uncertain parameters is introduced. Important fundamental properties of the solutions are discussed on the basis of the established technique and new results are proposed. More precisely, existence and uniqueness criteria of solutions of the regularized equations are established. In addition, an estimation is proposed for the distance between two solutions. Our results contribute to the progress in the area of the theory of fuzzy systems of differential equations and extend the existing results to the uncertain case. The proposed results also open the horizon for generalizations including equations with delays and some modifications of the Lyapunov theory. In addition, the opportunities for applications of such results to the design of efficient fuzzy controllers are numerous.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference45 articles.

1. L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

2. K. Deimling, Multivalued Differential Equations, Walter de Gruyter, New York, 1992. Available from: https://www.degruyter.com/document/doi/10.1515/9783110874228/html.

3. P. Diamond, P. Kloeden, Metric Spaces of Fuzzy Sets: Theory and Applications, World Scientific, Singapore, 1994. https://doi.org/10.1142/2326

4. C. V. Negoita, D. A. Ralescu, Applications of Fuzzy Sets to System Analysis, Springer, Basel, 1975. Available from: https://link.springer.com/book/10.1007/978-3-0348-5921-9.

5. M. L. Puri, D. A. Ralescu, Differentials of fuzzy functions, J. Math. Anal. Appl., 91 (1983), 552–558. https://doi.org/10.1016/0022-247X(83)90169-5

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3