On the regularization and matrix Lyapunov functions for fuzzy differential systems with uncertain parameters

Author:

Martynyuk Anatoliy1,Stamov Gani2,Stamova Ivanka2,Martynyuk–Chernienko Yulya1

Affiliation:

1. S. P. Timoshenko Institute of Mechanics, NAS of Ukraine, 3 Nesterov str., Kiev-57, Ukraine

2. Department of Mathematics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA

Abstract

<abstract><p>In this paper, for a regularized fuzzy system, a generalization of the direct Lyapunov method is adapted on the base of matrix-valued Lyapunov-like functions. First, the new concept of a regularization scheme for fuzzy systems is discussed and the matrix-valued Lyapunov function technique is introduced. Then, sufficient conditions are established for the boundedness and stability of the equilibrium set of solutions of the regularized fuzzy system of differential equations. Scalar and vector Lyapunov-type functions are used based on an auxiliary matrix-valued function. Finally, a discussion is offered for the future directions of the proposed approach. Since the strategies for the analysis of the stability of fuzzy models are very important in numerous aspects, we expect that our results will inspire researchers to develop the introduced concept.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference39 articles.

1. J. P. LaSalle, S. Lefschetz, Stability by Lyapunov's Second Method with Applications, Academic Press, New York, 1961. Available from: https://www.elsevier.com/books/stability-by-liapunovs-direct-method-with-applications-by-joseph-l-salle-and-solomon-lefschetz/la-salle/978-0-12-437056-2.

2. A. M. Lyapunov, Stability of Motion, Academic Press, New York & London, 1966. Available from: https://www.elsevier.com/books/stability-of-motion/liapunov/978-1-4832-3009-2.

3. G. Leitmann, Deterministic control of uncertain systems via a constructive use of Lyapunov stability theory, in System Modelling and Optimization, Springer, (1990), 38–55. https://doi.org/10.1007/BFb0008354

4. M. J. Lacerda, P. Seiler, Stability of uncertain systems using Lyapunov functions with non-monotonic terms, Automatica, 82 (2017), 187–193. https://doi.org/10.1016/j.automatica.2017.04.042

5. G. Stamov, I. M. Stamova, Uncertain impulsive differential systems of fractional order: almost periodic solutions, Int. J. Syst. Sci., 49 (2018), 631–638. https://doi.org/10.1080/00207721.2017.1416428

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3