A deep learning approach for vehicle velocity prediction considering the influence factors of multiple lanes

Author:

Xu Mingxing1,Lin Hongyi2,Liu Yang2

Affiliation:

1. Ministry of Housing and Urban-Rural Development of the People's Republic of China

2. State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing, China

Abstract

<abstract> <p>Predicting the future velocity of vehicles is essential for the safety of autonomous driving and the Intelligent Transport System. This study investigates how the surrounding vehicles influence a driving vehicle. Based on the HighD dataset, a scenario that considers the current lane and the neighboring lanes is selected while the drivers' visual angles and visual gap angles along with other parameters in the dataset are characterized as features. To predict the velocity of a driving vehicle and calibrate the influence of surrounding vehicles, a Transformer-based model integrating the features of multiple vehicles is proposed, and different features are added to the layers while constructing the model. Moreover, the information from previous timestamps of the vehicle state is integrated to estimate the duration of the influences, since the influence of an incident is not instantaneous. In our experiments, we find that the duration of the influence on the driving state perfectly fits the driver's reaction time when maneuvers occur in the surrounding vehicles. In addition, we further quantify the importance of the influence on the vehicle velocity prediction based on the Random Forest and obtain some practical conclusions, for instance, the velocity of a vehicle is more influenced by the front vehicle in the left lane than that in the right lane, but is still mainly influenced by the front vehicle in the current lane.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3