A Comparative Study of Vehicle Velocity Prediction for Hybrid Electric Vehicles Based on a Neural Network

Author:

Zhang Pei123ORCID,Lu Wangda123,Du Changqing123ORCID,Hu Jie1234,Yan Fuwu123

Affiliation:

1. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China

2. Hubei Research Center for New Energy & Intelligent Connected Vehicle Engineering, Wuhan University of Technology, Wuhan 430070, China

3. Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China

4. Hubei Longzhong Laboratory, Wuhan University of Technology, Xiangyang 441000, China

Abstract

Vehicle velocity prediction (VVP) plays a pivotal role in determining the power demand of hybrid electric vehicles, which is crucial for establishing effective energy management strategies and, subsequently, improving the fuel economy. Neural networks (NNs) have emerged as a powerful tool for VVP, due to their robustness and non-linear mapping capabilities. This paper describes a comprehensive exploration of NN-based VVP methods employing both qualitative theory analysis and quantitative numerical simulations. The used methodology involved the extraction of key feature parameters for model inputs through the utilization of Pearson correlation coefficients and the random forest (RF) method. Subsequently, three distinct NN-based VVP models were constructed comprising the following: a backpropagation neural network (BPNN) model, a long short-term memory (LSTM) model, and a generative pre-training (GPT) model. Simulation experiments were conducted to investigate various factors, such as the feature parameters, sliding window length, and prediction horizon, and the prediction accuracy and computation time were identified as key performance metrics for VVP. Finally, the relationship between the model inputs and velocity prediction performance was revealed through various comparative analyses. This study not only facilitated the identification of an optimal NN model configuration to balance prediction accuracy and computation time, but also serves as a foundational step toward enhancing the energy efficiency of hybrid electric vehicles.

Funder

National Natural Science Foundation of China

Key R&D Project of Hubei Province

Independent Innovation Projects of the Hubei Longzhong Laboratory

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3