Author:
Xu Xinzheng,Zhao Xiaoyang,Wei Meng,Li Zhongnian
Abstract
<abstract>
<p>Convolutional neural networks (CNNs) utilize local translation invariance in the Euclidean domain and have remarkable achievements in computer vision tasks. However, there are many data types with non-Euclidean structures, such as social networks, chemical molecules, knowledge graphs, etc., which are crucial to real-world applications. The graph convolutional neural network (GCN), as a derivative of CNNs for non-Euclidean data, was established for non-Euclidean graph data. In this paper, we mainly survey the progress of GCNs and introduce in detail several basic models based on GCNs. First, we review the challenges in building GCNs, including large-scale graph data, directed graphs and multi-scale graph tasks. Also, we briefly discuss some applications of GCNs, including computer vision, transportation networks and other fields. Furthermore, we point out some open issues and highlight some future research trends for GCNs.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference98 articles.
1. Z. Zhang, P. Cui, W. Zhu, Deep Learning on Graphs: A Survey, IEEE Trans. Knowl. Data Eng., 34 (2022), 249–270. https://doi.org/10.1109/TKDE.2020.2981333
2. D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, The emerging field of signal processing on graphs: Extending high dimensional data analysis to networks and other irregular domains, IEEE Signal Process. Mag., 30 (2013), 83–98. https://doi.org/10.1109/MSP.2012.2235192
3. A. Sandryhaila, J. M. F. Moura, Big data analysis with signal processing on graphs: Representation and processing of massive data sets with irregular structure, IEEE Signal Process. Mag., 31 (2014), 80–90. https://doi.org/10.1109/MSP.2014.2329213
4. A. Sandryhaila, J. M. F. Moura, Discrete signal processing on graphs, IEEE Trans. Signal Process., 61 (2013), 1644–1656. https://doi.org/10.1109/TSP.2013.2238935
5. J. Bruna, W. Zaremba, A. Szlam, Y. Lecun, Spectral networks and locally connected networks on graphs, arXiv preprint, (2013), arXiv: 1312.6203. https://doi.org/10.48550/arXiv.1312.6203
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献