A Survey of Computationally Efficient Graph Neural Networks for Reconfigurable Systems

Author:

Kose Habib Taha1ORCID,Nunez-Yanez Jose2ORCID,Piechocki Robert1ORCID,Pope James13ORCID

Affiliation:

1. School of Electrical, Electronic and Mechanical Engineering, University of Bristol, Bristol BS8 1UB, UK

2. Department of Electrical Engineering, University of Linköping, SE-581 83 Linköping, Sweden

3. School of Engineering Mathematics and Technology, University of Bristol, Bristol BS8 1TW, UK

Abstract

Graph neural networks (GNNs) are powerful models capable of managing intricate connections in non-Euclidean data, such as social networks, physical systems, chemical structures, and communication networks. Despite their effectiveness, the large-scale and complex nature of graph data demand substantial computational resources and high performance during both training and inference stages, presenting significant challenges, particularly in the context of embedded systems. Recent studies on GNNs have investigated both software and hardware solutions to enhance computational efficiency. Earlier studies on deep neural networks (DNNs) have indicated that methods like reconfigurable hardware and quantization are beneficial in addressing these issues. Unlike DNN research, studies on efficient computational methods for GNNs are less developed and require more exploration. This survey reviews the latest developments in quantization and FPGA-based acceleration for GNNs, showcasing the capabilities of reconfigurable systems (often FPGAs) to offer customized solutions in environments marked by significant sparsity and the necessity for dynamic load management. It also emphasizes the role of quantization in reducing both computational and memory demands through the use of fixed-point arithmetic and streamlined vector formats. This paper concentrates on low-power, resource-limited devices over general hardware accelerators and reviews research applicable to embedded systems. Additionally, it provides a detailed discussion of potential research gaps, foundational knowledge, obstacles, and prospective future directions.

Funder

T.C. Millî Eğitim Bakanlığı

Knut and Alice Wallenberg Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Boosting house price estimations with Multi-Head Gated Attention;Expert Systems with Applications;2025-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3