1. F. Bach, E. Moulines, Non-strongly-convex smooth stochastic approximation with convergence rate $O(1/n)$, in Advances in Neural Information Processing Systems, 26 (2013), 773–781. Available from: https://proceedings.neurips.cc/paper/2013/file/7fe1f8abaad094e0b5cb1b01d712f708-Paper.pdf.
2. A. Jentzen, B. Kuckuck, A. Neufeld, P. von Wurstemberger, Strong error analysis for stochastic gradient descent optimization algorithms, IMA J. Numer. Anal., 41 (2021), 455–492. https://doi.org/10.1093/imanum/drz055
3. E. Moulines, F. Bach. Non-asymptotic analysis of stochastic approximation algorithms for machine learning, in Advances in Neural Information Processing Systems, 24 (2011), 451–459. Available from: https://proceedings.neurips.cc/paper/2011/file/40008b9a5380fcacce3976bf7c08af5b-Paper.pdf.
4. Y. Nesterov, Introductory Lectures on Convex Optimization, 2004. https://doi.org/10.1007/978-1-4419-8853-9
5. A. Rakhlin, O. Shamir, K. Sridharan, Making gradient descent optimal for strongly convex stochastic optimization, in Proceedings of the 29th International Conference on Machine Learning, Madison, WI, USA, (2012), 1571–1578.