Strong error analysis for stochastic gradient descent optimization algorithms

Author:

Jentzen Arnulf1,Kuckuck Benno1,Neufeld Ariel2,von Wurstemberger Philippe3

Affiliation:

1. Faculty of Mathematics and Computer Science, University of Münster 48149 Münster, Germany

2. Division of Mathematical Sciences, NTU Singapore Singapore 637371, Singapore

3. Department of Mathematics, ETH Zurich 8092 Zurich, Switzerland

Abstract

Abstract Stochastic gradient descent (SGD) optimization algorithms are key ingredients in a series of machine learning applications. In this article we perform a rigorous strong error analysis for SGD optimization algorithms. In particular, we prove for every arbitrarily small $\varepsilon \in (0,\infty )$ and every arbitrarily large $p{\,\in\,} (0,\infty )$ that the considered SGD optimization algorithm converges in the strong $L^p$-sense with order $1/2-\varepsilon $ to the global minimum of the objective function of the considered stochastic optimization problem under standard convexity-type assumptions on the objective function and relaxed assumptions on the moments of the stochastic errors appearing in the employed SGD optimization algorithm. The key ideas in our convergence proof are, first, to employ techniques from the theory of Lyapunov-type functions for dynamical systems to develop a general convergence machinery for SGD optimization algorithms based on such functions, then, to apply this general machinery to concrete Lyapunov-type functions with polynomial structures and, thereafter, to perform an induction argument along the powers appearing in the Lyapunov-type functions in order to achieve for every arbitrarily large $ p \in (0,\infty ) $ strong $ L^p $-convergence rates.

Funder

Swiss National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,General Mathematics

Reference114 articles.

1. Natural gradient works efficiently in learning;Amari;Neural Comput.,1998

2. Adaptive method of realizing natural gradient learning for multilayer perceptrons;Amari;Neural Comput.,2000

3. Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression;Bach;J. Mach. Learn. Res.,2014

4. Non-asymptotic analysis of stochastic approximation algorithms for machine learning Advances in Neural Information Processing Systems 24;Bach,2011

5. Non-strongly-convex smooth stochastic approximation with convergence rate 0(1/n);Bach,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3