Affiliation:
1. Jiangxi Provincial Center for Applied Mathematics & School of Mathematics and Statistics, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
2. College of Basic Science, Ningbo University of Finance and Economics, Ningbo, Zhejiang 315175, P. R. China
Abstract
<abstract><p>In this work, our main concern is to study the existence and multiplicity of solutions for the following sub-elliptic system with Hardy type potentials and multiple critical exponents on Carnot group</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \left\{\begin{aligned} &-\Delta_{\mathbb{G}}u = \frac{\psi^{\alpha}|u|^{2^*(\alpha)-2}u}{d(z)^{\alpha}}+ \frac{p_{1}}{2^*(\gamma)}\frac{\psi^{\gamma}|u|^{p_{1}-2}u|v|^{p_{2}}}{d(z, z_{0})^{\gamma}} +\lambda h(z)\frac{\psi^{\sigma}|u|^{q-2}u}{d(z)^{\sigma}} \, \, & \text{in } \, \, \Omega, \\ &-\Delta_{\mathbb{G}}v = \frac{\psi^{\beta}|v|^{2^*(\beta)-2}v}{d(z)^{\beta}}+ \frac{p_{2}}{2^*(\gamma)}\frac{\psi^{\gamma}|u|^{p_{1}}|v|^{p_{2}-2}v}{d(z, z_{0})^{\gamma}} +\lambda h(z)\frac{\psi^{\sigma}|v|^{q-2}v}{d(z)^{\sigma}}\, \, &\text{in } \, \, \Omega, \\ &\quad u = v = 0\, \, &\text{on } \, \, \partial\Omega, \end{aligned}\right. \end{equation*} $\end{document} </tex-math></disp-formula></p> <p>where $ -\Delta_{\mathbb{G}} $ is a sub-Laplacian on Carnot group $ \mathbb{G} $, $ \alpha, \beta, \gamma, \sigma\in [0, 2) $, $ d $ is the $ \Delta_{\mathbb{G}} $-natural gauge, $ \psi = |\nabla_{\mathbb{G}}d| $ and $ \nabla_{\mathbb{G}} $ is the horizontal gradient associated to $ \Delta_{\mathbb{G}} $. The positive parameters $ \lambda $, $ q $ satisfy $ 0 < \lambda < \infty $, $ 1 < q < 2 $, and $ p_{1} $, $ p_{2} > 1 $ with $ p_{1}+p_{2} = 2^*(\gamma) $, here $ 2^*(\alpha): = \frac{2(Q-\alpha)}{Q-2} $, $ 2^*(\beta): = \frac{2(Q-\beta)}{Q-2} $ and $ 2^*(\gamma) = \frac{2(Q-\gamma)}{Q-2} $ are the critical Hardy-Sobolev exponents, $ Q $ is the homogeneous dimension of the space $ \mathbb{G} $. By means of variational methods and the mountain-pass theorem of Ambrosetti and Rabonowitz, we study the existence of multiple solutions to the sub-elliptic system.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献