Affiliation:
1. Department of Basic Sciences, Air Force Engineering University, Xi'an, Shaanxi 710051, China
2. College of Basic Science, Ningbo University of Finance and Economics, Ningbo, Zhejiang 315175, China
3. School of Mathematics and Statistics & Jiangxi Provincial Center for Applied Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
Abstract
<abstract><p>We are devoted to the study of the following sub-Laplacian system with Hardy-type potentials and critical nonlinearities</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \left\{\begin{aligned} -\Delta_{\mathbb{G}}u-\mu_{1}\frac{\psi^{2}u}{\text{d}(z)^{2}} = \lambda_{1}\frac{\psi^{\alpha}|u|^{2^*(\alpha)-2}u}{\text{d}(z)^{\alpha}}+\beta p_{1}f(z)\frac{\psi^{\gamma}|u|^{p_{1}-2}u|v|^{p_{2}}}{\text{d}(z)^{\gamma}}\,\,\, \text{in } \mathbb{G},\\ -\Delta_{\mathbb{G}}v-\mu_{2}\frac{\psi^{2}v}{\text{d}(z)^{2}} = \lambda_{2}\frac{\psi^{\alpha}|v|^{2^*(\alpha)-2}v}{\text{d}(z)^{\alpha}}+\beta p_{2}f(z)\frac{\psi^{\gamma}|u|^{p_{1}}|v|^{p_{2}-2}v}{\text{d}(z)^{\gamma}}\,\,\, \text{in } \mathbb{G}, \end{aligned}\right. \end{equation*} $\end{document} </tex-math></disp-formula></p>
<p>where $ -\Delta_{\mathbb{G}} $ is the sub-Laplacian on Carnot group $ \mathbb{G} $, $ \mu_{1} $, $ \mu_{2}\in [0, \mu_{\mathbb{G}}) $, $ \alpha, \, \gamma\in (0, 2) $, $ \lambda_{1} $, $ \lambda_{2} $, $ \beta $, $ p_{1} $, $ p_{2} > 0 $ with $ 1 < p_{1}+p_{2} < 2 $, $ \text{d}(z) $ is the $ \Delta_{\mathbb{G}} $-gauge, $ \psi = |\nabla_{\mathbb{G}}\text{d}(z)| $, $ 2^*(\alpha): = \frac{2(Q-\alpha)}{Q-2} $ is the critical Sobolev-Hardy exponents, and $ \mu_{\mathbb{G}} = (\frac{Q-2}{2})^{2} $ is the best Hardy constant on $ \mathbb{G} $. By combining a variant of the symmetric mountain pass theorem with the genus theory, we prove the existence of infinitely many weak solutions whose energy tends to zero when $ \beta $ or $ \lambda_{1} $, $ \lambda_{2} $ belong to a suitable range.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)