A review of PV solar energy system operations and applications in Dhofar Oman

Author:

Alhousni Fadhil Khadoum1,Ismail Firas Basim1,Okonkwo Paul C.2,Mohamed Hassan1,Okonkwo Bright O.3,Al-Shahri Omar A.1

Affiliation:

1. Power Generation Unit, Institute of Power Engineering (IPE), Universiti Tenaga Nasional (UNITEN), 43000 Kajang, Selangor, Malaysia

2. Mechanical and Mechatronics Engineering, Dhofar University, Salalah, Oman

3. Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea

Abstract

<abstract> <p>Energy is seen as one of the most determinant factors for a nation's economic development. The Sun is an incredible source of inexhaustible energy. The efficiency of the conversion and application of Photovoltaic (PV) systems is related to the PV module's electricity generation and the location's solar potentials. Thus, the solar parameters of a region are important for feasibility studies on the application of solar energy. Although solar energy is available everywhere in the world, countries closest to the equator receive the greatest solar radiation and have the highest potential for solar energy production and application. Dhofar in Salalah-Oman is one of the cities in Oman with high temperatures all year round. The city has been reported to exhibit a maximum solar flux of about 1360 w/m<sup>2</sup> and a maximum accumulative solar flux of about 12,586,630 W/m<sup>2</sup> in March. These interesting solar potentials motivated the call for investment in solar energy in the region as an alternative to other non-renewable energy sources such as fossil fuel-powered generators. As a consequence, several authors have reported on the application of different solar energy in the different cities in Oman, especially in remote areas and various results reported. Therefore, the present review highlighted the achievements reported on the availability of solar energy sources in different cities in Oman and the potential of solar energy as an alternative energy source in Dhofar. The paper has also reviewed different PV techniques and operating conditions with emphasis on the advanced control strategies used to enhance the efficiency and performance of the PV energy system. Applications of standalone and hybrid energy systems for in-house or remote power generation and consumption in Dhofar were discussed. It also focused on the relevance of global radiation data for the optimal application of PV systems in Dhofar. The future potential for the full application of solar systems in the region was mentioned and future work was recommended.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference105 articles.

1. Khamisani AA (2019) Design methodology of off-grid PV solar powered system (A case study of solar powered bus shelter). Goolincoln Avenue Charleston, IL: Eastern Illinois University. Available from: https://castle.eiu.edu/energy/Design%20Methodology%20of%20Off-Grid%20PV%20Solar%20Powered%20System_5_1_2018.pdf.

2. Barhoumi EM, Farhani S, Okonkwo PC, et al. (2021) Techno-economic sizing of renewable energy power system case study Dhofar Region-Oman. Int J Green Energy 18: 856-865. https://doi.org/10.1080/15435075.2021.1881899

3. Jha SK (2013) Application of solar photovoltaic system in Oman—Overview of technology, opportunities and challenges. Int J Renewable Energy Research (IJRER) 3: 331-340. Available from: https://dergipark.org.tr/en/pub/ijrer/issue/16079/168241.

4. Wazwaz A, AlHabshi H, Gharbia Y (2013) Investigations of the measured solar radiation, relative humidity and atmospheric temperature and their relations at Dhofar University. Available from: http://www.i-asem.org/publication_conf/anbre13/M4D.6.ER654_526F.pdf.

5. Kazem H, Chaichan M (2016) Design and analysis of standalone solar cells in the desert of Oman. J Sci Eng Research 3: 62-72.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3