Multi-Criteria Decision Support System for Automatically Selecting Photovoltaic Sets to Maximise Micro Solar Generation

Author:

Zanlorenzi Guilherme12,Szejka Anderson Luis2ORCID,Canciglieri Junior Osiris2ORCID

Affiliation:

1. R&D Department, NHS Sistemas Eletrônicos, Curitiba 81260-000, Brazil

2. Industrial and Systems Engineering Graduate Program, Pontifical Catholic University of Parana, Curitiba 80215-901, Brazil

Abstract

Technological advancements have improved solar energy generation and reduced the cost of installing photovoltaic (PV) systems. However, challenges such as low energy-conversion efficiency and the unpredictability of electricity generation due to shading or climate conditions persist. Despite decreasing costs, access to solar energy generation technologies remains limited. This paper proposes a multi-criteria decision support system (MCDSS) for selecting the most suitable PV set (comprising PV modules, inverters, and batteries) for microgrid installations. The MCDSS employs two multi-criteria decision-making methods (MCDM) for analysis and decision-making: AHP and TOPSIS. The system was tested in two case studies: Barreiras, with a global efficiency of 14.4% and an internal rate of return (IRR) of 56.0%, and Curitiba, with a worldwide efficiency of 14.8% and an IRR of 52.0%. The research provided a framework for assessing and selecting PV sets based on efficiency, cost, and return on investment. Methodologically, it integrates multiple MCDM techniques, demonstrating their applicability in renewable energy. Managerially, it offers a practical tool for decision-makers in the energy sector to enhance the feasibility and attractiveness of microgeneration projects. This research highlights the potential of MCDSS to improve the efficiency and accessibility of solar energy generation.

Funder

National Council for Scientific and Technological Development

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3