Affiliation:
1. Department of Mathematics, University of California San Diego, 9500 Gilman Dr #0112, La Jolla, CA, 92093, USA
Abstract
<p style='text-indent:20px;'>We prove that if <inline-formula><tex-math id="M1">\begin{document}$ G $\end{document}</tex-math></inline-formula> is a countably infinite group and <inline-formula><tex-math id="M2">\begin{document}$ (L, \lambda) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ (K, \kappa) $\end{document}</tex-math></inline-formula> are probability spaces having equal Shannon entropy, then the Bernoulli shifts <inline-formula><tex-math id="M4">\begin{document}$ G \curvearrowright (L^G, \lambda^G) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ G \curvearrowright (K^G, \kappa^G) $\end{document}</tex-math></inline-formula> are isomorphic. This extends Ornstein's famous isomorphism theorem to all countably infinite groups. Our proof builds on a slightly weaker theorem by Lewis Bowen in 2011 that required both <inline-formula><tex-math id="M6">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M7">\begin{document}$ \kappa $\end{document}</tex-math></inline-formula> have at least <inline-formula><tex-math id="M8">\begin{document}$ 3 $\end{document}</tex-math></inline-formula> points in their support. We furthermore produce finitary isomorphisms in the case where both <inline-formula><tex-math id="M9">\begin{document}$ L $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M10">\begin{document}$ K $\end{document}</tex-math></inline-formula> are finite.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Algebra and Number Theory,Analysis,Applied Mathematics,Algebra and Number Theory,Analysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献