Author:
ALPEEV ANDREI,SEWARD BRANDON
Abstract
AbstractWe continue the study of Rokhlin entropy, an isomorphism invariant for probability-measure-preserving (p.m.p.) actions of countablegroups introduced in Part I [B. Seward. Krieger’s finite generator theorem for actions of countable groups I. Invent. Math. 215(1) (2019), 265–310]. In this paper we prove a non-ergodic finite generator theorem and use it to establish sub-additivity and semicontinuity properties of Rokhlin entropy. We also obtain formulas for Rokhlin entropy in terms of ergodic decompositions and inverse limits. Finally, we clarify the relationship between Rokhlin entropy, sofic entropy, and classical Kolmogorov–Sinai entropy. In particular, using Rokhlin entropy we give a new proof of the fact that ergodic actions with positive sofic entropy have finite stabilizers.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Bernoulli shifts with bases of equal entropy are isomorphic;Journal of Modern Dynamics;2022
2. The Koopman Representation and Positive Rokhlin Entropy;International Mathematics Research Notices;2021-10-01
3. Affinity of the Arov Entropy;Functional Analysis and Its Applications;2018-07