On spectral gaps of growth-fragmentation semigroups in higher moment spaces

Author:

Mokhtar-Kharroubi Mustapha1,Banasiak Jacek2

Affiliation:

1. Laboratoire de Mathématiques, CNRS-UMR 6623, Université de Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France

2. Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, South Africa, Institute of Mathematics, Łódź University of Technology, Łódź, Poland

Abstract

<p style='text-indent:20px;'>We present a general approach to proving the existence of spectral gaps and asynchronous exponential growth for growth-fragmentation semigroups in moment spaces <inline-formula><tex-math id="M1">\begin{document}$ L^{1}( \mathbb{R} _{+};\ x^{\alpha }dx) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ L^{1}( \mathbb{R} _{+};\ \left( 1+x\right) ^{\alpha }dx) $\end{document}</tex-math></inline-formula> for unbounded total fragmentation rates and continuous growth rates <inline-formula><tex-math id="M3">\begin{document}$ r(.) $\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id="M4">\begin{document}$ \int_{0}^{+\infty } \frac{1}{r(\tau )}d\tau = +\infty .\ $\end{document}</tex-math></inline-formula> The analysis is based on weak compactness tools and Frobenius theory of positive operators and holds provided that <inline-formula><tex-math id="M5">\begin{document}$ \alpha &gt;\widehat{\alpha } $\end{document}</tex-math></inline-formula> for a suitable threshold <inline-formula><tex-math id="M6">\begin{document}$ \widehat{ \alpha }\geq 1 $\end{document}</tex-math></inline-formula> that depends on the moment space we consider. A systematic functional analytic construction is provided. Various examples of fragmentation kernels illustrating the theory are given and an open problem is mentioned.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Modeling and Simulation,Numerical Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3