Convergence rate to equilibrium for conservative scattering models on the torus: a new tauberian approach

Author:

Lods B.,Mokhtar-Kharroubi M.

Abstract

The object of this paper is to provide a new and systematic tauberian approach to quantitative long time behaviour of C 0 C_{0} -semigroups ( V ( t ) ) t 0 \left (\mathcal {V}(t)\right )_{t \geqslant 0} in L 1 ( T d × R d ) L^{1}(\mathbb {T}^{d}\times \mathbb {R}^{d}) governing conservative linear kinetic equations on the torus with general scattering kernel k ( v , v ) \boldsymbol {k}(v,v’) and degenerate (i.e. not bounded away from zero) collision frequency σ ( v ) = R d k ( v , v ) m ( d v ) \sigma (v)=\int _{\mathbb {R}^{d}}\boldsymbol {k}(v’,v)\boldsymbol {m}(\mathrm {d}v’) , (with m ( d v ) \boldsymbol {m}(\mathrm {d}v) being absolutely continuous with respect to the Lebesgue measure). We show in particular that if N 0 N_{0} is the maximal integer s 0 s \geqslant 0 such that 1 σ ( ) R d k ( , v ) σ s ( v ) m ( d v ) L ( R d ) , \begin{equation*} \frac {1}{\sigma (\cdot )}\int _{\mathbb {R}^{d}}\boldsymbol {k}(\cdot ,v)\sigma ^{-s}(v)\boldsymbol {m}(\mathrm {d}v) \in L^{\infty }(\mathbb {R}^{d}), \end{equation*} then, for initial datum f f such that T d × R d | f ( x , v ) | σ N 0 ( v ) d x m ( d v ) > \displaystyle \int _{\mathbb {T}^{d}\times \mathbb {R}^{d}}|f(x,v)|\sigma ^{-N_{0}}(v)\mathrm {d}x\boldsymbol {m}(\mathrm {d}v) >\infty it holds V ( t ) f ϱ f Ψ L 1 ( T d × R d ) = ε f ( t ) ( 1 + t ) N 0 1 , ϱ f R d f ( x , v ) d x m ( d v ) , \begin{equation*} \left \|\mathcal {V}(t)f-\varrho _{f}\Psi \right \|_{L^{1}(\mathbb {T}^{d}\times \mathbb {R}^{d})}=\dfrac {{\varepsilon }_{f}(t)}{(1+t)^{N_{0}-1}}, \qquad \varrho _{f}≔\int _{\mathbb {R}^{d}}f(x,v)\mathrm {d}x\boldsymbol {m}(\mathrm {d}v), \end{equation*} where Ψ \Psi is the unique invariant density of ( V ( t ) ) t 0 \left (\mathcal {V}(t)\right )_{t \geqslant 0} and lim t ε f ( t ) = 0 \lim _{t\to \infty }{\varepsilon }_{f}(t)=0 . We in particular provide a new criteria of the existence of invariant density. The proof relies on the explicit computation of the time decay of each term of the Dyson-Phillips expansion of ( V ( t ) ) t 0 \left (\mathcal {V}(t)\right )_{t \geqslant 0} and on suitable smoothness and integrability properties of the trace on the imaginary axis of Laplace transform of remainders of large order of this Dyson-Phillips expansion. Our construction resorts also on collective compactness arguments and provides various technical results of independent interest. Finally, as a by-product of our analysis, we derive essentially sharp “subgeometric” convergence rate for Markov semigroups associated to general transition kernels.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3