Author:
Kim Ho-Youn,Kim Yong-Jung,Lim Hyun-Jin
Abstract
<p style='text-indent:20px;'>A revertible discrete velocity kinetic model is introduced when the environment is spatially heterogeneous. It is proved that the parabolic scale singular limit of the model exists and satisfies a new heterogeneous diffusion equation that depends on the diffusivity and the turning frequency together. An energy functional is introduced which takes into account spatial heterogeneity in the velocity field. The monotonicity of the energy functional is the key to obtain uniform estimates needed for the weak convergence proof. The Div-Curl lemma completes the strong convergence proof.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Modeling and Simulation,Numerical Analysis
Reference26 articles.
1. J. E. Broadwell.Shock structure in a simple discrete velocity gas, Phys. of Fluids, 7 (1964), 1243-1247.
2. T. Carleman, Problèmes Mathématiques dans la Théorie Cinétique de Gaz, Publ. Sci. Inst. Mittag-Leffler. 2 Almqvist & Wiksells Boktryckeri Ab, Uppsala, 1957.
3. S. Chapman.On the Brownian displacements and thermal diffusion of grains suspended in a non-uniform fluid, Proc. Roy. Soc. Lond. A, 119 (1928), 34-54.
4. B. Choi, Y.-J. Kim.Diffusion of biological organisms: Fickian and Fokker–Planck type diffusions, SIAM J. Appl. Math., 79 (2019), 1501-1527.
5. S.-H. Choi, Y.-J. Kim.Chemotactic traveling waves by the metric of food, SIAM J. Appl. Math., 75 (2015), 2268-2289.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献