Emergence of boundary conditions in the heat equation

Author:

Chung Jaywan1,Kang Seungmin2ORCID,Kim Ho-Youn3ORCID,Kim Yong-Jung2

Affiliation:

1. Energy Conversion Research Center, Korea Electrotechnology Research Institute 1 , 12, Jeongiui-gil, Changwon-si 51543, Gyeongsangnam-do, South Korea

2. Department of Mathematical Sciences, KAIST 2 , 291 Daehak-ro, Daejeon 34141, South Korea

3. Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology 3 , Thuwal 23955-6900, Saudi Arabia

Abstract

The Dirichlet and Neumann conditions are commonly employed as boundary conditions for the heat equation, yet their legitimacy is debatable in certain scenarios. This paper aims to demonstrate that, in fact, diffusion laws autonomously select boundary conditions. To illustrate this, we incorporate the bounded domain into a larger domain with a diffusivity parameter ϵ > 0 and examine the solution’s behavior at the interface. Our findings reveal that homogeneous Neumann or Dirichlet boundary conditions emerge as ϵ → 0, contingent upon the type of the heterogeneous diffusion.

Funder

Korea Electrotechnology Research Institute

National Research Foundation of Korea

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3