Influence of Water Table and Peat Thickness on Dissolved Organic Carbon of Tropical Peat Soil with Sulfidic Substratum from Central Kalimantan, Indonesia

Author:

Damanik ZafrullahORCID,Jaya AdiORCID,Radjagukguk BostangORCID,Adam ChaidirORCID

Abstract

Peatlands are important due to their high carbon storage, their role in suppressing climate change processes, and their importance for local and global communities’ livelihood. Large amounts of organic carbon pools in peatlands can be released into the environment as gaseous emitted carbon and lost through waterways (fluvial). The carbon released through the water stream consists of organic and inorganic forms and is partly in the form of CO2 and CH4 gases. The organic form consists of dissolved organic carbon (DOC) and particulate organic carbon, where DOC is the most dominant organic carbon in water sourced from peatlands. This research's objectives were to study the DOC concentration of peat water resulting from the hydrological condition's difference and the peat thickness overlaying the sulfidic substratum. The study was carried out in the Pangkoh area of Pulang Pisau district of Central Kalimantan. Peat water is taken on PVC pipes installed on each plot representing different peat thicknesses (deep, moderate, and shallow peat) at a depth of 25, 50, 100, 150, 200, and 250 cm from the soil surface. The water sampling was conducted on the peak wet season, during the transition from wet season to dry season and during the peak dry season. The results showed that DOC was influenced by peat thickness, depth of sulfidic material, and groundwater level. The release of DOC is higher from the deep peat than from the thin and moderate peat. The difference in DOC concentration between peat thickness is also related to the electrical conductivity of the peat water. The results showed a negative correlation between electrical conductivity and DOC concentration. The negative correlation was significant in the observation of the rainy and dry seasons, while in the transitional season, it was not significant.

Funder

the Academy of Finland

Publisher

Pandawa Institute

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3