Peatland protection and restoration are key for climate change mitigation

Author:

Humpenöder FlorianORCID,Karstens Kristine,Lotze-Campen HermannORCID,Leifeld Jens,Menichetti Lorenzo,Barthelmes Alexandra,Popp Alexander

Abstract

Abstract Peatlands cover only about 3% the global land area, but store about twice as much carbon as global forest biomass. If intact peatlands are drained for agriculture or other human uses, peat oxidation can result in considerable CO2 emissions and other greenhouse gases (GHG) for decades or even centuries. Despite their importance, emissions from degraded peatlands have so far not been included explicitly in mitigation pathways compatible with the Paris Agreement. Such pathways include land-demanding mitigation options like bioenergy or afforestation with substantial consequences for the land system. Therefore, besides GHG emissions owing to the historic conversion of intact peatlands, the increased demand for land in current mitigation pathways could result in drainage of presently intact peatlands, e.g. for bioenergy production. Here, we present the first quantitative model-based projections of future peatland dynamics and associated GHG emissions in the context of a 2 °C mitigation pathway. Our spatially explicit land-use modelling approach with global coverage simultaneously accounts for future food demand, based on population and income projections, and land-based mitigation measures. Without dedicated peatland policy and even in the case of peatland protection, our results indicate that the land system would remain a net source of CO2 throughout the 21st century. This result is in contrast to the outcome of current mitigation pathways, in which the land system turns into a net carbon sink by 2100. However, our results indicate that it is possible to reconcile land use and GHG emissions in mitigation pathways through a peatland protection and restoration policy. According to our results, the land system would turn into a global net carbon sink by 2100, as projected by current mitigation pathways, if about 60% of present-day degraded peatlands would be rewetted in the coming decades, next to the protection of intact peatlands.

Funder

DFG Priority Program “Climate Engineering: Risks, Challenges, Opportunities?”

Horizon 2020 Framework Programme

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3