Affiliation:
1. 1Research Lab. Comp., Harbin Institute of Technology, Harbin, 150001, P.R. China
Abstract
Abstract
With the development of tire mechanics and computer technology, tire deformation, rolling resistance, and temperature distribution under rolling conditions may be predicted accurately through finite element analysis (FEA). Deep knowledge of tire fracture and failure behavior may also be obtained by FEA. During the past years, an in-house finite element program has been developed in our research laboratory which can analyze the tire deformation, stress, and strain under the static inflation and footprint load conditions and can predict the tire rolling resistance and temperature distribution as well. This paper gives a brief description of the mathematical and mechanical foundations of the developed FEA code and the computing procedures, emphasizing the tire material loss model and the calculation procedure of strain energy release rate in tire fracture analysis. Two characteristics of the presented model compared with the published literature are the three-dimensional anisotropic properties included in the loss model of cord-rubber materials and a new VCCT (Virtual Crack Closure Technique), which is simple and physically direct, saves on the amount of computation, and is developed to compute the fields of strain energy release rates (Serrs) in the crack front to analyze tire fracture behavior.
Subject
Polymers and Plastics,Mechanics of Materials,Automotive Engineering
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献