Analysis of Temperature Distribution in a Rolling Tire Due to Strain Energy Dissipation

Author:

Park H. C.1,Youn S-K.1,Song T. S.2,Kim N-J.2

Affiliation:

1. 1Department of Mechanical Engineering, KAIST, 373-1, Kusung, Yusung, Taejon, 305-701, Korea

2. 2Kumho Tire Research Center, Kumho Co., Kwangju City, 506-040, Korea

Abstract

Abstract This paper addresses a systematic procedure using a sequential approach for the analysis of the coupled thermomechanical behavior of a steady state rolling tire. Not only knowledge of mechanical stresses but also knowledge of the temperature loading in a rolling tire are very important because material damage and material properties are affected significantly by the temperature. In general, the thermomechanical behavior of a pneumatic tire is a highly complex transient phenomenon that requires the solution of a dynamic nonlinear coupled thermoviscoelasticity problem with heat sources resulting from internal dissipation and friction. In this paper, a sequential approach, with effective calculation schemes, to modeling this system is presented to predict the temperature distribution with reasonable accuracy in a steady state rolling tire. This approach has three major analysis modules: deformation, dissipation, and thermal modules. In the dissipation module, an analytic method for the calculation of the heat source in a rolling tire is established using viscoelastic theory. For the verification of the calculated temperature profiles and rolling resistance at different velocities, they are compared with measured ones. Also, discussed are the accuracies of the linear and quadratic finite element models used in the analysis.

Publisher

The Tire Society

Subject

Polymers and Plastics,Mechanics of Materials,Automotive Engineering

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3