Rim Slip and Bead Fitment of Tires: Analysis and Design

Author:

Lee C.1

Affiliation:

1. 1Corporate Tire Research, The Goodyear Tire & Rubber Company, Akron, Ohio 44309-3531; email: ching-chih_lee@goodyear.com.

Abstract

Abstract A tire slips circumferentially on the rim when subjected to a driving or braking torque greater than the maximum tire-rim frictional torque. The balance of the tire-rim assembly achieved with weight attachment at certain circumferential locations in tire mounting is then lost, and vibration or adverse effects on handling may result when the tire is rolled. Bead fitment refers to the fit between a tire and its rim, and in particular, to whether a gap exists between the two. Rim slip resistance, or the maximum tire-rim frictional torque, is the integral of the product of contact pressure, friction coefficient, and the distance to the wheel center over the entire tire-rim interface. Analytical solutions and finite element analyses were used to study the dependence of the contact pressure distribution on tire design and operating attributes such as mold ring profile, bead bundle construction and diameter, and inflation pressure, etc. The tire-rim contact pressure distribution consists of two parts. The pressure on the ledge and the flange, respectively, comes primarily from tire-rim interference and inflation. Relative contributions of the two to the total rim slip resistance vary with tire types, depending on the magnitudes of ledge interference and inflation pressure. Based on the analyses, general guidelines are established for bead design modification to improve rim slip resistance and mountability, and to reduce the sensitivity to manufacturing variability. An iterative design and analysis procedure is also developed to improve bead fitment.

Publisher

The Tire Society

Subject

Polymers and Plastics,Mechanics of Materials,Automotive Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3