A Clustering Optimization Strategy for Molecular Taxonomy Applied to Planktonic Foraminifera SSU rDNA

Author:

Göker Markus1,Grimm Guido W.2,Auch Alexander F.3,Aurahs Ralf4,Kučera Michal4

Affiliation:

1. German Collection of Microorganisms and Cell Cultures (DSMZ), Inhoffenstraße 7B, 38124 Braunschweig, Germany.

2. Swedish Museum of Natural History, Box 50007, Stockholm, Sweden.

3. Center for Bioinformatics Tübingen, Eberhard Karls University of Tübingen, Sand 14, 72076 Tübingen, Germany.

4. Institute of Geosciences, Eberhard Karls University of Tübingen, Sigwartstraße 10, 72076 Tübingen, Germany.

Abstract

Identifying species is challenging in the case of organisms for which primarily molecular data are available. Even if morphological features are available, molecular taxonomy is often necessary to revise taxonomic concepts and to analyze environmental DNA sequences. However, clustering approaches to delineate molecular operational taxonomic units often rely on arbitrary parameter choices. Also, distance calculation is difficult for highly alignment-ambiguous sequences. Here, we applied a recently described clustering optimization method to highly divergent planktonic foraminifera SSU rDNA sequences. We determined the distance function and the clustering setting that result in the highest agreement with morphological reference data. Alignment-free distance calculation, when adapted to the use with partly non-homologous sequences caused by distinct primer pairs, outperformed multiple sequence alignment. Clustering optimization offers new perspectives for the barcoding of species diversity and for environmental sequencing. It bridges the gap between traditional and modern taxonomic disciplines by specifically addressing the issue of how to optimally account for both genetic divergence and given species concepts.

Publisher

SAGE Publications

Subject

Computer Science Applications,Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3