Targeted phage hunting to specific Klebsiella pneumoniae clinical isolates is an efficient antibiotic resistance and infection control strategy

Author:

Ferriol-González Celia1,Concha-Eloko Robby1,Bernabéu-Gimeno Mireia1,Fernández-Cuenca Felipe234,Cañada-García Javier E.45,García-Cobos Silvia45ORCID,Sanjuán Rafael1ORCID,Domingo-Calap Pilar1ORCID

Affiliation:

1. Instituto de Biología Integrativa de Sistemas, Universitat de València-CSIC, Paterna, Spain

2. Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain

3. Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena-CSIC-Universidad de Sevilla, Sevilla, Spain

4. CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain

5. Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain

Abstract

ABSTRACT Klebsiella pneumoniae is one of the most threatening multi-drug-resistant pathogens today, with phage therapy being a promising alternative for personalized treatments. However, the intrinsic capsule diversity in Klebsiella spp. poses a substantial barrier to the phage host range, complicating the development of broad-spectrum phage-based treatments. Here, we have isolated and genomically characterized phages capable of infecting each of the acquired 77 reference serotypes of Klebsiella spp. , including capsular types widespread among high-risk K. pneumoniae clones causing nosocomial infections. We demonstrated the possibility of isolating phages for all capsular types in the collection, revealing high capsular specificity among taxonomically related phages, in contrast to a few phages that exhibited broad-spectrum infection capabilities. To decipher the determinants of the specificity of these phages, we focused on their receptor-binding proteins, with particular attention to depolymerases. We also explored the possibility of designing a broad-spectrum phage cocktail based on phages isolated in reference capsular-type strains and determining the ability to lyse relevant clinical isolates. A combination of 12 phages capable of infecting 55% of the reference Klebsiella spp. serotypes was tested on a panel of carbapenem-resistant K. pneumoniae clinical isolates. Thirty-one percent of isolates were susceptible to the phage cocktail. However, our results suggest that in a highly variable encapsulated bacterial host, phage hunting must be directed to the specific Klebsiella isolates. This work is a step forward in the understanding of the complexity of phage–host interactions and highlights the importance of implementing precise and phage-specific strategies to treat K. pneumoniae infections worldwide. IMPORTANCE The emergence of resistant bacteria is a serious global health problem. In the absence of effective treatments, phages are a personalized and effective therapeutic alternative. However, little is still known about phage–host interactions, which are key to implementing effective strategies. Here, we focus on the study of Klebsiella pneumoniae, a highly pathogenic encapsulated bacterium. The complexity and variability of the capsule, where in most cases phage receptors are found, make it difficult for phage-based treatments. Here, we isolated a large collection of Klebsiella phages against all the reference strains and in a cohort of clinical isolates. Our results suggest that clinical isolates represent a challenge, especially high-risk clones. Thus, we propose targeted phage hunting as an effective strategy to implement phage-derived therapies. Our results are a step forward for new phage-based strategies to control K. pneumoniae infections, highlighting the importance of understanding phage–host interactions to design personalized treatments against Klebsiella spp.

Funder

European Society of Clinical Microbiology and Infectious Diseases

Ministerio de Ciencia e Innovación

GVA | Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana

Universidad de Valencia

Comunidad de Madrid

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3