Artificial Neural Network Architectures for Solving the Contract Bridge

Author:

M Dharmalingam1

Affiliation:

1. Arts and Science College, (Modakkurichi) Sivagiri, Bharathiar University

Abstract

Contract Bridge is an intelligent game, which enhances the creativity with multiple skills and quest to acquire the intricacies of the game, because no player knows exactly what moves other players are capable of during their turn. The Bridge being a game of imperfect information is to be equally well defined, since the outcome at any intermediate stage is purely based on the decision made on the immediate preceding stage. One among the architectures of Artificial Neural Networks (ANN) is applied by training on sample deals and used to estimate the number of tricks to be taken by one pair of bridge players is the key idea behind Double Dummy Bridge Problem (DDBP) implemented with the neural network paradigm. This study mainly focuses on Cascade-Correlation Neural Network (CCNN) and Elman Neural Network (ENN) which is used to solve the Bridge problem by using Resilient Back-Propagation (R-prop) Algorithm and Work Point Count System.

Publisher

IJAICT India Publications

Subject

Materials Chemistry,Economics and Econometrics,Media Technology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3