Fish Species Classification using SVM Kernels

Author:

P Pandiyan1,T Rajasekaran1,K Vishnu Kumar1,R Sivaramakrishnan1,T Thigarajan1

Affiliation:

1. KPR Institute of Engineering and Technology, Coimbatore, India

Abstract

This paper presents classification of fish species using support vector machine (SVM) algorithm with four kernel functions such as linear, polynomial, sigmoid and radial basis functions. The datasets for performing this research is obtained from Fish-Pak website which has required number of images for classifying the two different fish species namely Catla and Rohu with three fish features like head, body and scale data. The number of images for Rohu fish species is not equal to the Catla type fish species therefore image augmentation technique is used to balance the number of images. The simulation results reveal that SVM with radial basis function-based kernel provides the accuracy of 78 %.

Publisher

IJAICT India Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3