On the Schottky Barrier Height Lowering Effect of Ti3SiC2 in Ohmic Contacts to P-Type 4H-SiC

Author:

Fisher C. A.,

Abstract

In this paper, an experimental investigation into titanium (Ti) / aluminium (Al)-based ohmic contacts to p-type 4H-silicon carbide (SiC) has been presented. Electrical characterisation of the fabricated contacts showed that metal structures with an initial Ti layer yielded the lowest specific contact resistance (ρc), with a mean value of 3.7×10-5 Ω-cm2 being achieved after annealing in argon (Ar) at 1000°C for 2 minutes. Transmission electron microscopy (TEM) analysis illustrated the epitaxial relationship between the 4H-SiC and the as-deposited Ti layer, and, in conjunction with energy dispersive X-ray (EDX) analysis, showed that after annealing a ~5 nm thick layer of Ti3SiC2 was present, epitaxially arranged with the 4H-SiC. X-ray diffraction (XRD) analysis showed that the presence of the Ti3SiC2 metallic phase was more prevalent in the samples with Ti as the initial metal layer annealed at 1000°C, which corresponded with lower specific contact resistance. Fitting of experimental data to a thermionic field emission (TFE) model allowed the Schottky barrier height to be extracted; it was found that the lowest Schottky barrier heights were more prevalent where the most intense Ti3SiC2 phases were observed during XRD analysis.

Publisher

Fundamental Journals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3