Abstract
Modern science operates with various methods, among which modeling is one of the most popular. The development of information technology allows the study of analogues (models) with the most significant characteristics of the real object. Modeling activities have been considered as useful teaching method in STEM education. Cloud services (like GeoGebra) are effective means for STEM education. The paper features a methodology of forming modeling skills based on STEM projects, which is grounded on modeling interesting curves of Analytic Geometry course. The content of the methodology is a course in Computer Modeling, which includes a module "STEM education and modeling". The module idea is based on the formation of skills required to model interesting curves (ellipse, hyperbola, parabola, conchoid of Nicomedes, limaçon of Pascal, strophoid, cissoid of Diocles, lemniscate of Bernoulli, Cassini oval, cycloidal curves, folium of Descartes, witch of Agnesi, logarithmic spiral). The methodology provides 4 steps (Step 1 – the teacher offers an example of a STEM project, which is discussed in class and solved by the teacher using GeoGebra; Step 2 – students are divided into groups of 3-4 people; Step 3 – the teacher offers a short STEM project (7-10 days), in which students model the curve; Step 4 – students offer their own STEM project (15-20 days), the solution of which is based on the modeling of an interesting curve). To test the effectiveness of the developed methodology, a pedagogical experiment was organized (2019-2021), which was joined by Master's students majoring in "Secondary Education (Mathematics)" and "Secondary Education (Computer Science)". Makarenko Sumy State Pedagogical University (Ukraine) was the experimental base. The effectiveness of the proposed methodology is proved by the sign test at the significant level of 0.05.
Publisher
Institute for Digitalisation of Education of the National Academy of Educational Sciences of Ukraine
Subject
Cell Biology,Developmental Biology,Embryology,Anatomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献