Predicting Iran’s future agro-climate variability and coherence using zonation‑based PCA

Author:

Sharafi Saeed

Abstract

The effects of climate changes on agroecosystems can cause relevant issues. Using principal component analysis (PCA) we determined the 67 agricultural climate indicators (ACI) at 44 of Iran’s synoptic stations under current (1990-2019) and future (2025, 2050, 2075, and 2100) conditions. Based on UNESCO aridity index, the agroecological zonation (AEZ) was used to classify Iran’s regions (very dry, dry, semidry and humid climates). Using the PCA method, the first 5 principal components were determined by including data sets for temperature (winter, spring, summer and autumn maximum and winter minimum temperature), precipitation (winter and summer precipitation), reference evapotranspiration (ETref), and the degree of growth days in spring and winter, which explained about 96 percent of the total variance. For each climate empirical equation for ETref was selected. In order to accurate evaluation of ETref were used The Penman-Monteith based on FAO56 (PM-FAO56) for the very dry climate, the Hargreaves equation for the semidry climate, and the Penman 1 and 2 equations for the dry and humid climates, respectively. According to the results, the first component alone, with an eigenvalue of 41.15, explained more than 74 percent of the total variance. Based on the results of zoning by the PCA outcomes, the stations for 1990-2019 were classified into 7 zones. While 2025, 2050, 2075, and 2100 were classified in 6, 7, 6, and 5 zones, respectively. Under the future climatic conditions of the country, in terms of climatic indicators, the similarity between the stations will increase and the climatic diversity of the country will decline compared to current conditions. The results demonstrated that the PCA method would be valuable for monitoring AEZ in semidry climates at reasonably long periods.

Publisher

Firenze University Press

Subject

Atmospheric Science,Agronomy and Crop Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3