Assessing the Water Footprints (WFPs) of Agricultural Products across Arid Regions: Insights and Implications for Sustainable Farming

Author:

Sharafi Saeed1ORCID,Nahvinia Mohammad Javad2ORCID,Salehi Fatemeh1

Affiliation:

1. Department of Environment Science and Engineering, Arak University, Arak 38156879, Iran

2. Department of Water Science and Engineering, Arak University, Arak 38156879, Iran

Abstract

Water resource management has emerged as a pivotal concern within arid regions in recent times. The water footprint (WFP) index stands out as a principal gauge for facilitating comprehensive watershed management. This study endeavors to compute the WFP of diverse agricultural products encompassing major crops, orchards, cucurbits, and medicinal plants across arid regions. This research focuses on three distinct climate scenarios: the Shazand Plain with a semidry climate, the Khomein Plain characterized by a dry climate, and the Saveh Plain exhibiting a very dry climate. This study also seeks to ascertain the climate most conducive to cultivating crops from a WFP (green, blue, and gray) perspective. To achieve these objectives, this study employed the CropWat family software to determine crop water requirements, as well as considering crop yield and relevant parameters for calculations. The findings of the investigation unveiled that the cultivated areas in the respective climates amounted to 19,479 ha (semidry), 18,166 ha (dry), and 41,682 ha (very dry). These areas were allocated as follows: 88%, 85%, and 55% for crops; 11%, 13%, and 40% for orchards; and 1%, 2%, and 5% for cucurbit crops. Importantly, the very dry climate was predisposed to allocating more land for low-water-demand orchards. Among the major crops, wheat occupied 44%, 39%, and 43% of the total areas in the semidry, dry, and very dry climates, respectively. Analyzing the overall agricultural output in these climates, it was revealed that over 79%, 69%, and 66% of production correlated with crops; 17%, 19%, and 22% with orchards; and 4%, 12%, and 12% with cucurbits, respectively. In terms of water consumption, maize and apples emerged as the highest performers, with varying consumption patterns across different crops. Interestingly, canola exhibited a substantially higher WFP, surpassing wheat and barley by 56.48% and 58.85%, respectively, in dry climates. Cucurbit crops, on the other hand, displayed a lower WFP in dry climates, which could potentially encourage their cultivation. The influence of climate warming on canola’s WFPgray introduced complexity, challenging the conventional correlation between WFP and yields. Medicinal plants consistently demonstrated lower WFP values, underscoring the need for deliberate and considerate cultivation decisions in this regard.

Publisher

MDPI AG

Reference83 articles.

1. Technologies to deliver food and climate security through agriculture;Horton;Nat. Plants,2021

2. PV Interneurons: Critical Regulators of E/I Balance for Prefrontal Cortex-Dependent Behavior and Psychiatric Disorders;Ferguson;Front. Neural Circuits,2018

3. Water pricing reform for sustainable water resources management in China’s agricultural sector;Zhang;Agric. Water Manag.,2023

4. Guterres, A. (2020). The Sustainable Development Goals Report 2020, United Nations Department of Economic and Social Affairs.

5. A global and high-resolution assessment of the green, blue and grey water footprint of wheat;Mekonnen;Hydrol. Earth Syst. Sci.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3