Ammonia emissions and fine particulate matter: some evidence in Lombardy

Author:

Fusta Moro Alessandro1ORCID,Salis Matteo1,Zucchi Andrea1,Cameletti Michela2ORCID,Golini Natalia1ORCID,Ignaccolo Rosaria1ORCID

Affiliation:

1. University of Turin, IT

2. University of Bergamo, IT

Abstract

Lombardy is one of the most polluted regions at the European level, also due to its particular geographical structure and weather conditions which prevent the pollutants’ dispersion, and the high levels of emissions coming from human activities. Recently, some evidence has been found regarding the relationship between agriculture and air quality, particularly between ammonia - produced mainly by the livestock sector - and particulate matter concentrations. In this respect, Lombardy is the first Italian region for agriculture production, having 69% of its area classified as agricultural land and about 245 swine and 92 bovines per rural km2. In the Agriculture Impact On Italian Air project (AgrImOnIA, https://agrimonia.net, funded by Fondazione Cariplo within the framework of Data Science for science and society), we aim to predict continuously in space (i.e. mapping) air pollutants concentrations in Lombardy region, taking into account meteorology, land use and emissions coming from agriculture. In this regard, data integration and harmonization process have been carried out starting from data from different sources and characterized by different spatial and temporal resolutions. The first results are based on spatio-temporal Kriging models, with external drift, and an extension of the traditional random forest algorithm to consider the spatial and temporal correlation. These models will be used to generate scenario analysis which simulates the impact of policy interventions in the agricultural sector to mitigate its environmental impact on air quality.

Publisher

Firenze University Press and Genova University Press

Reference6 articles.

1. Cameletti, M., Ignaccolo, R., and Bande, S. (2011). Comparing spatio-temporal models for particulate matter in Piemonte. Environmetrics, 22(8):985–996.

2. Gr¨aler, B., Pebesma, E., and Heuvelink, G. (2016). Spatio-Temporal Interpolation using gstat. The R Journal, 8(1):204–218.

3. Gu, B., Zhang, L., Dingenen, R. V., Vieno, M., Grinsven, H. J. V., Zhang, X., Zhang, S., Chen, Y., Wang, S., Ren, C., Rao, S., Holland, M., Winiwarter, W., Chen, D., Xu, J., and Sutton, M. A. (2021). Abating ammonia is more cost-effective than nitrogen ox

4. Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B., and Gr¨aler, B. (2018). Random forestbas a generic framework for predictive modeling of spatial and spatio-temporal variables.bPeerJ, 6:e5518.

5. INEMAR - ARPA Lombardia (2022). INEMAR, Inventario Emissioni in Atmosfera: emissioni in Regione Lombardia nell’anno 2019 - versione in revisione pubblica. ARPA Lombardia Settore Monitoraggi Ambientali. https://www.inemar.eu/xwiki/bin/view/InemarDatiWeb/In

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3