KdV hierarchies and quantum Novikov's equations

Author:

Buchstaber V. M.,Mikhailov A. V.

Abstract

This paper begins with a review of the well-known KdV hierarchy, the $N$-th Novikov equation, and its finite hierarchy in the classical commutative case. This finite hierarchy consists of $N$ compatible integrable polynomial dynamical systems in $\mathbb{C}^{2N}$. We discuss a non-commutative version of the $N$-th Novikov hierarchy defined on the finitely generated free associative algebra ${\mathfrak{B}}_N$ with $2N$ generators. Using the method of quantisation ideals in ${\mathfrak{B}}_N$, for $N=1,2,3,4$, we obtain two-sided homogeneous ideals ${\mathfrak{Q}}_N\subset{\mathfrak{B}}_N$ (quantisation ideals) that are invariant with respect to the $N$-th Novikov equation and such that the quotient algebra ${\mathfrak{C}}_N = {\mathfrak{B}}_N/ {\mathfrak{Q}}_N$ has a well-defined Poincare-Birkhoff-Witt basis. This allows us to define the quantum $N$-th Novikov equation and its hierarchy on ${\mathfrak{C}}_N$. We derive $N$ commuting quantum first integrals (Hamiltonians) and represent the equations of the hierarchy in the Heisenberg form. Essential for our research is the concept of cyclic Frobenius algebras, which we introduced in our recent paper. In terms of the quadratic form that defines the structure of a cyclic Frobenius algebra, we explicitly express the first integrals of the $N$-th Novikov hierarchy in the commutative, free, and quantum cases.

Publisher

Centre pour la Communication Scientifique Directe (CCSD)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3