Author:
Mendoza-Agüero N.,Agarwal V.,Villafán-Vidales H. I.,Campos-Alvarez J.,Sebastian P. J.
Abstract
Transparent and conductive Al doped zinc oxide (AZO) films were reactively sputtered from metallic targets onto macro-porous silicon (MPS) substrate to fabricate a heterojunction interface structure. A tungsten oxide (WO3) thin film was placed between metallic aluminum back contact and bulk silicon to extract photogenerated holes from the absorber. Due to the susceptibility of PS to naturally oxidize over the period of time, a thin film of SiO2 was thermally grown to stabilize the electrical response of the junction. Such thin layer acts as passive film to prevent recombination and is placed between the p-n junction. Photovoltaic properties of this heterojunction were studied by using the current density-voltage (J-V) measurement under AM 1.5 illumination. The experimental results show an increase in photovoltaic performance of AZO/MPS solar cell with a buffer layers of WO3. Such heterostructures are promising for the development of the low-cost, clean, and durable devices with appreciable light-to-electricity conversion efficiency.
Publisher
Journal of New Materials for Electrochemical Systems
Subject
Electrochemistry,General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献