Ultrasound Applied in the Reduction of Viscosity of Heavy Crude Oil

Author:

Olaya-Escobar David RobertoORCID,Quintana-Jiménez Leonardo AugustoORCID,González-Jiménez Edgar EmirORCID,Olaya-Escobar Erika SofiaORCID

Abstract

Reducing the viscosity of heavy oil through upgrading techniques is crucial to maintaining the demand for oil, which is growing at an annual rate of 1.8%. The phenomenon of acoustic cavitation occurs when ultrasound is applied in the treatment of heavy crudes. This is an emerging technology that is being developed to improve the physical and chemical properties of highly viscous crudes, which facilitates handling, increases the proportion of light factions, and improves their price in the market. Taking into account that it does not yet operate on an industrial scale, a bibliographic review of the advances in acoustic cavitation technology with ultrasound for the improvement of heavy crude is justified, to contribute to the development of its industrial application by identifying new approaches and research guidelines in engineering and science. The objective of this article is to show the advance of said technology and describe the experiments carried out by various authors. For this purpose, a literature review was conducted with documents published from 1970 to 2020, which were compiled through a systematic search in academic databases. As a result of this review, some conceptual gaps and deficiencies in the phenomenological foundation were found, which explain the current difficulties to implement experimental tests and design the process at larger scales. These deficiencies limit the quality and repeatability of the results. A need was also identified to focus the efforts on a systematic experimentation that fulfills the laboratory and pilot plant phases, which are essential to take these technologies to an industrial scale.

Publisher

Universidad Pedagogica y Tecnologica de Colombia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3