The Von Willebrand factor-ADAMTS-13 axis: a two-faced Janus in bleeding and thrombosis

Author:

Lancellotti Stefano,Sacco Monica,Tardugno Maira,Ferretti Antonietta,De Cristofaro Raimondo

Abstract

Von Willebrand factor (VWF), a blood multimeric protein with a very high molecular weight, plays a crucial role in the primary hemostasis, the physiological process characterized by the adhesion of blood platelets to the injured vessel wall. Hydrodynamic forces are responsible for the VWF multimers conformational transitions from a globular to a stretched linear conformation. These characteristics render this protein a valuable object to be investigated by mechanochemistry, the biophysical chemistry branch that studies the effects of shear forces on protein conformation. This review will focus on the structural elements of the VWF molecule involved in the biochemical response to shear forces. The stretched VWF conformation favors the interaction with the platelet GpIb and at the same time with ADAMTS-13, the zinc-protease that cleaves VWF in the A2 domain, limiting its prothrombotic capacity. It is important to consider the level or the function of VWF or ADAMTS-13 always in relation each other, keeping in mind that in many thrombotic forms of microangiopathies the reduction of the ratio between the ADAMTS-13 activity and the VWF level (lower than 0.5) can be a valuable parameter to predict a real thrombotic risk. Hence, a significant increase in VWF level alone, even without any reduction of ADAMTS-13 concentration, would still be responsible for a significant reduction of the ADAMTS-13/VWF ratio, which ultimately could reflect or predict a prothrombotic risk. Future studies will have to validate the concept whether ADAMTS-13/VWF ratio could a valuable and reliable biomarker to predict or confirm the presence of thrombotic risk in several morbid conditions.

Publisher

PAGEPress Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3