The various states of von Willebrand factor and their function in physiology and pathophysiology

Author:

Huck Volker,Gorzelanny Christian,Schneider Matthias,Schneider Stefan

Abstract

SummaryThe specific interactions of von Willebrand factor (VWF) with the vessel wall, platelets or other interfaces strongly depend on (a shearinduced) VWF activation. Shear flow has been shown to induce a conformational transition of VWF, but is modulated by its thermodynamic state (state-function relationship). The state in turn is determined by physical (e.g. vessel geometry), physico-chemical (e.g. pH) and molecular-biological (e.g. mutants, binding) factors. Combining established results with recent insights, we reconstruct VWF biology and its statefunction relationship from endothelial cell release to final degradation in the human vasculature. After VWF secretion, endothelial-anchored and shear activated VWF multimers can rapidly interact with surrounding colloids, typically with platelets. Simultaneously, this VWF activation enables ADAMTS13 to cleave VWF multimers thereby limiting VWF binding capacity. The subsequent cell-surface dissociation leads to a VWF recoiling to a globular conformation, shielding from further degradation by ADAMTS13. High local concentrations of these soluble VWF multimers, transported to the downstream vasculature, are capable for an immediate reactivation and re-polymerisation initiating colloid-binding or VWF-colloid aggregation at the site of inflamed endothelium, vessel injuries or pathological high-shear areas. Focusing on these functional steps in the lifecycle of VWF, its qualitative and quantitative deficiencies in the different VWD types will facilitate more precise diagnostics and reliable risk stratification for prophylactic therapies. The underlying biophysical principles are of general character, which broadens prospective studies on the physiological and pathophysiological impact of VWF and VWF-associated diseases and beares hope for a more universal understanding of an entire class of phenomena.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3